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Abstract. This note characterizes a class of regression models where the set of coefficients
is restricted to the simplex (i.e., the coefficients are nonnegative and sum to one). This
structure arrises in the context of fitting a functional form nonparametrically where the
functional form is subject to shape constraints of a particular sort. Two examples are
given. The approach to inference is Bayesian, using a Dirichlet-based sparsity prior. A
variety of approaches to sampling from the posterior distribution are presented.
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1. Introduction

This note characterizes a class of regression models where the set of coefficients is re-
stricted to the simplex (i.e., the coefficients are nonnegative and sum to one). Two exam-
ples are presented that suggest the need for an under-identified setup. In the examples,
the coefficients themselves are nuisance parameters: They are part of the framework that
guarantees certain restrictions are maintained and they are not of interest on their own.

The approach to inference is Bayesian, using a Dirichlet-based sparsity prior. A variety
of approaches to sampling from the posterior distribution are presented.

Section 2 presents the model and the likelihood. Section 3 presents two examples. Sec-
tion 4 presents the prior. Sections 5 and 6 present a Gibbs sampler and an importance
sampler, respectively.

2. Model

The class of regression models under consideration here are characterized by the following:

yi = λ

K∑
j=1

Xij βj + εi, (2.1)

where λ > 0, εi
iid∼ N(0, σ2

ε), and β = (β1, . . . , βK) ∈ ∆K−1, where ∆K−1 denotes the simplex

of dimension (K − 1). In other words, β satisfies
∑K

j=1 βj = 1 and βj ≥ 0 for j = 1, . . . ,K.

Let y = (y1, . . . , yN ). Given (2.1), one can stack the observations in vector form:

y = λXβ + ε, (2.2)

where ε = (ε1, . . . , εN ) ∼ N(0N , σ
2
ε IN ). Note that X is an N × K matrix of observed

covariates. One can express (2.2) as a likelihood for the unobserved parameters:

p(y|λ, β, σ2
ε) = N(y|λXβ, σ2

ε IN ) = (2π σ2
ε)
−N/2 exp

(
−S(λ, β)

2σ2
ε

)
, (2.3)

where1

S(λ, β) := (y − λXβ)>(y − λXβ). (2.4)

The examples below suggest the desirability of K > N , in which case β will not be fully
identified. The goal will be to average across reasonable values for β.

Discussion. It is simple to impose the adding-up restriction by letting βk = 1 −
∑

j 6=k βj
for some k ∈ {1, . . . ,K} and rewriting (2.1) as

yi − λXik = λ
∑
j 6=k

βj (Xij −Xik) + εi. (2.5)

To express this more compactly, let X∗k denote the k-th column of X and subtract λX∗k
from both sides of (2.2) to produce

ykλ = λXkβ + ε, (2.6)

1A> denotes the transpose of A.
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where
ykλ := y − λX∗k (2.7)

and where the j-th column of the matrix Xk is given by

Xk
∗j := X∗j −X∗k. (2.8)

Although βk appears in (2.6) explicitly, the k-th column of Xk is the zero vector and
consequently βk vanishes. The non-negativity constraints can be dealt with via a posterior
sampler that apprehends Pr[β 6∈ ∆K−1] = 0.

Taking a different approach, all of the restrictions on β can be imposed via a reparametriza-
tion. Let v = (v1, . . . , vK) and let

βj =
evj∑K
j=1 e

vj
. (2.9)

We may express this dependence as β(v). Then v ∈ RK =⇒ β(v) ∈ ∆K−1. Thus v is
unrestricted in RK . However, note that if v′ = (v1 + c, . . . , vK + c), then β(v′) = β(v).
Consequently, even if β is identified, v will not be. A prior for v will reduce or remove the
implicit indeterminacy.

Prior and posterior. Given a prior distribution p(λ, β, σ2
ε) for the unknown parameters,

the posterior distribution can be expressed as

p(λ, β, σ2
ε |y) ∝ p(y|λ, β, σ2

ε) p(λ, β, σ
2
ε). (2.10)

I present priors for the unknown parameters in Section 4.2 The marginal posterior distri-
bution for β is given by

p(β|y) =

∫∫
p(λ, β, σ2

ε |y) dσ2
ε dλ. (2.11)

3. Two examples

I present two examples that have the form of simplex regression. Both examples are
related to probability distributions.

First example. Consider the problem of inferring the risk-neutral probability density from
put option data.3 The observed value of a European derivate security with payout function
gi(x) is

yi = B

∫ ∞
−∞

gi(x) q(x) dx+ εi, (3.1)

where q(x) is the risk-neutral probability distribution for the underlier, B is the discount
factor (i.e., the value of a risk-free discount bond that matures on the expiration date), and
εi is “measurement error” (of one sort or another; more on this below).

For a put option, gi(x) = max[si−x, 0], where si is the strike price. Based on this payout
function, define

v(s) := B

∫ ∞
−∞

max[s− x, 0] q(x) dx = B

∫ s

−∞
(s− x) q(x) dx. (3.2)

2The priors will involve a hyperparameter which is omitted here for expositional simplicity.
3Call option data can easily be incorporated as well.
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The observed value of a put option can be expressed as

yi = v(si) + εi. (3.3)

Note that v is subject to the following shape and boundary restrictions:

v(s) ≥ 0, v′(s) ≥ 0, and v′′(s) ≥ 0 (3.4)

and
lim

s→−∞
v(s) = 0, lim

s→−∞
v′(s) = 0, and, lim

s→∞
v′(s) = B. (3.5)

In particular, note that v′′(s) ≡ B q(s). From this perspective it is natural to view the
problem of inferring the risk-neutral density as an exercise in nonparametric regression
subject to a set of shape constraints.4

A complementary approach is to directly represent q(x) nonparametrically in such a way
as to automatically satisfy all of the shape restrictions. In order to represent the unknown
density flexibly, one can adopt a mixture of basis densities. Basis densities are basis functions
that satisfy conditions that guarantee they are valid densities. Consider a collection of basis
densities {fj(x)}Kj=1, where

∫∞
−∞ fj(x) dx = 1 and fj(x) ≥ 0 for x ∈ (−∞,∞). See the

Appendix for the description of a useful class of basis densities.
Define

f(x|β) :=

K∑
j=1

βj fj(x). (3.6)

Replacing q(x) with f(x|β), we have∫ ∞
−∞

gi(x) f(x|β) dx =
k∑
j=1

βj Xij , (3.7)

where

Xij =

∫ ∞
−∞

gi(x) fj(x) dx. (3.8)

Substituting (3.7) into (3.1) and letting λ = B produces (2.1). From this perspective, εi
may be understood as both measurement error and model error, the latter resulting from
the possibility that q(x) lies outside the space spanned by the basis densities.

In passing, note that point masses (as represented by Dirac delta functions) can be used
as basis densities: fj(x) = δ(x−mj), where mj is the location of the j-th basis density and
δ( · ) is the Dirac delta function.5 Then [referring to (3.8)]

Xij =
∫∞
−∞ gi(x) δ(x−mj) dx = gi(mj) = max[si −mj , 0].

Carlson et al. (2005) implicitly adopt these basis densities. They do not, however, undertake
a Bayesian approach to estimation.

By the nature of the problem posed, a suitably flexible set of basis densities may require
K > N which will lead to under-identification. The prior distribution and the posterior

4There is a substantial literature that deals with the problem from this perspective. For example, see Aı̈t-
Sahalia and Duarte (2003).

5The two relevant properties of the delta function are
∫∞
−∞ δ(x− x0) dx = 1 and

∫∞
−∞ f(x) δ(x− x0) dx =

f(x0).
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samplers described below are chosen with this this aspect of the problem in mind. In
particular, the sparsity prior presented below allows for the stable estimation of a large
number of mixture coefficients.

As noted in the introduction, the β vector is not itself of interest. Rather, it is the
function f(x|β) — accounting for the uncertainty regarding β — that is of interest. To this
end, one integrates out β using its posterior distribution p(β|y) to obtain

f̂(x) :=

∫
f(x|β) p(β|y) dβ =

K∑
j=1

β̂j fj(x) = f(x|β̂), (3.9)

where

β̂ = E[β|y]. (3.10)

This superficially resembles a “plug-in” estimator. However, note that β̂ is determined by
integration and not by optimization. In any event, the latter route may not be available
owing to under-identification.

Second example. Consider the problem of fitting a cumulative distribution function
(CDF) to observed data of the following form:6 {(si, yi)}ni=1, where the si are distinct
and

yi = Pr[x ≤ si]. (3.11)

Let G(s) =
∫ s
−∞ g(x) dx, where g(x) is an unknown density. Note that G(∞) = 1. The

possibility of a point mass at infinity can be accomodated by expressing the relation between
si and yi as follows:

yi = (1− w)G(si) + εi, (3.12)

where w ∈ [0, 1). The point mass can be eliminated by setting w = 0.
Now consider a collection of basis distributions {Fj(x)}Kj=1, where F ′j(x) is a basis density.7

Define

F (x|β) :=
K∑
j=1

βj Fj(x). (3.13)

Replacing G(x) with F (x|β), we have

F (si|β) =

K∑
j=1

βj Xij , (3.14)

where Xij = Fj(si). Letting λ = (1− w), we can express (3.12) as (2.1).

4. Prior distributions

In this section I describe the prior distributions for the unknown parameters (σ2
ε , λ, β, α).

6See Fisher (2015) for a fleshed-out example that involves the probability distribution for the half-life of
deviations from purchasing power parity.

7See the Appendix for an example of basis distributions.
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Prior for σ2
ε . For the purpose at hand, σ2

ε is a nuisance parameter. As such, I adopt a
Jeffreys prior:

p(σ2
ε) ∝ 1/σ2

ε . (4.1)

Prior for λ. Three priors for λ will be entertained. First, one may assume λ is known (i.e.,
a dogmatic prior); for example, λ = 1. Second, one may assume λ is normally distributed
(truncated at zero). And third, one may assume the improper prior p(λ) ∝ 1(0,∞)(λ), which
we may interpret as the limit of a truncated normal as the variance goes to infinity.

Prior for β. Now we focus on the prior for β.
A benefit of the Bayesian approach is the ability to incorporate important considerations

via the prior for β. In particular, the prior for β should embody two features. First the
prior should ensure the constraint β ∈ ∆K−1, where ∆K−1 is the (K − 1)-dimensional
simplex. Second the prior should be capable of expressing the idea that while any of the
basis densities is possible, only a few should have nontrivial probability associated with it.
The Dirichlet distribution embodies both of these features. Let

p(β|α) = Dirichlet(β|α ξ) =
Γ(α)∏K

j=1 Γ(α ξj)

K∏
j=1

β
α ξj−1
j , (4.2)

where α > 0, ξ ∈ ∆K−1, and α ξ = (α ξ1, . . . , α ξK). Note E[β|α, ξ] = ξ. I will refer
to α as the concentration parameter. If ξj = 1/K and α = K, then the prior is flat:
p(β|α) = (K − 1)!.

Prior for α. As K gets large relative to n, the flat prior for β tends to dominate the
likelihood (2.3) and the posterior can become quite flat itself. Setting α < K encourages
parsimony, pushing the mass of the prior toward the vertices of the simplex, thereby im-
plicitly suggesting that only a few of the components are nonnegligible. This prior could be
described as “partially informed ignorance.”

On the other hand, if ξ is well-informed (because, for example, it is based on closely-
related data) then α > K may be suitable. I provide a prior for α that encourages sparsity,
but also allows the data to overrule the prior and emphasize other values for α with more
or less concentrated posterior distributions.

Let z = log(α) and let

p(z) = N(z|ζ, τ2), (4.3)

where ζ and τ are the mean and standard deviation parameters (respectively). The prior
for z implies the following prior for α:

p(α) =
N(log(α)|ζ, τ2)

α
= Log-Normal(α|ζ, τ2). (4.4)

The prior median for α is eζ .
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5. First posterior sampler

This section describes a Gibbs sampler. Given the likelihood and the prior, the posterior
distribution for the parameters can be expressed as

p(λ, β, σ2
ε , α|y) ∝ p(y|λ, β, σ2

ε) p(β|α) p(λ) p(α)

σ2
ε

. (5.1)

The Gibbs sampler cycles through the following full conditional posterior distributions:

p(σ2
ε |y, λ, β, α) (5.2a)

p(λ|y, σ2
ε , β, α) (5.2b)

p(β|y, λ, σ2
ε , α) (5.2c)

p(α|y, λ, σ2
ε , β). (5.2d)

Drawing σ2
ε . Drawing from the conditional posterior for σ2

ε is straightforward. Note

p(σ2
ε |y, λ, β, α) = p(σ2

ε |y, λ, β) = Inv-χ2(σ2
ε |ν, s2), (5.3)

where ν = N and s2 = S(λ, β)/N .

Drawing λ. Regarding the conditional posterior distribution for λ, note

p(λ|y, σ2
ε , β, α) = p(λ|y, σ2

ε , β) ∝ N(y|λXβ, σ2
εIN ) p(λ). (5.4)

In addition, N(y|λXβ, σ2
εIN ) ∝ N(λ|mλ, vλ) where

mλ =
y>(Xβ)

(Xβ)>(Xβ)
and vλ =

σ2
ε

(Xβ)>(Xβ)
. (5.5)

Consequently, the conditional distribution for λ is normally distributed if p(λ) is normal.
If p(λ) is truncated normal, then so is the conditional posterior.

Drawing α. Note

p(α|y, λ, σ2
ε , β, α) = p(α|β) ∝ p(β|α) p(α). (5.6)

For making draws from the posterior using a random-walk Metropolis sampler, it is conve-
nient to change variables: let z = log(α). The likelihood for z is

p(β|z) = p(β|α)|α=ez , (5.7)

where the likelihood for α is given by (4.2). The prior for z is given in (4.3). The Metropolis
step proceeds as follows: Given some average step-size s, make random-walk proposals of
z′ ∼ N(z, s2). The acceptance ratio is given by

ρ(z, z′) :=
p(β|z′) p(z′)
p(β|z) p(z)

, (5.8)

and the updated value for z is given by

z(r) =

{
z′ ρ(z, z′) ≥ u
z(r−1) otherwise

, (5.9)

where u ∼ Uniform(0, 1).
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Drawing β. Drawing β from its conditional posterior distribution is made somewhat com-
plicated by (i) the restriction of β to the simplex, (ii) the non-conjugate prior for β, and (iii)
the potential under-identification of β. A “one-at-a-time” Gibbs sampler performs the task
well. Owing to the non-conjugate prior, each of the draws is computed via a Metropolis–
Hastings step. It is important that the proposal distribution be calibrated to the scale of
each coefficient (which varies dramatically across the individual coefficients). I describe the
scheme in three stages: First I address a technical detail that involves the simplex; second
I describe the proposal distribution; and third I display the Metropolis–Hastings sampler.

Technical detail. Let β−j := β \ {βj}. The conditional distribution for βj |β−j is degenerate

because the value of βj is fixed by β−j (since
∑K

j=1 βj = 1). By eliminating one of the
components, say βk, we can then cycle through the remaining K − 1 components via a
one-at-a-time Gibbs sampler. However, the magnitude of βk will affect the efficiency of the
sampler. If βk is close to zero, we will find ourselves back in the previous trap with little
or no wiggle room to draw βj . Therefore, for each sweep of the Gibbs sampler, remove the
largest component from the previous sweep and sample over the remaining components.

In order to implement this approach, let

Sk(λ, β) := S(λ, β)|βk=1−
∑
j 6=k βj

= (ykλ − λXkβ)>(ykλ − λXkβ),
(5.10)

where ykλ is given in (2.7) and the columns of Xk are given in (2.8). For future reference,
note that (for any j 6= k)

Sk(λ, β) = ck0j + ck1j βj + ck2j β
2
j , (5.11)

where the coefficients (ck0j , c
k
1j , c

k
2j) are functions of (X, y, β−(j,k), λ) and are thus free of βj

and βk. In particular,8

ck1j = −2λ2

(
(Xk
∗j)
>Xk
∗j βj + λ−1(Xk

∗j)
>ykλ − (Xk

∗j)
>Xkβ

)
(5.12a)

ck2j = λ2 (Xk
∗j)
>Xk
∗j . (5.12b)

Proposal distribution. Given (5.11) and (2.3), the conditional likelihood for βj (having elim-
inated βk) is proportional to a truncated normal distribution:

p(y|λ, β, σ2
ε) ∝ exp

(
−Sk(λ, β)

2σ2
ε

)
∝ N[0,bkj ](βj |m

k
j , v

k
j ), (5.13)

where

bkj = βj + βk = 1−
∑
i 6=j,k

βi (5.14)

8Although both βj and βk appear explicitly in (5.12a), each has a zero coefficient when terms are collected.
The same statement applies to (5.15a) below.
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and [from (5.11) and (5.12)]

mk
j = −1

2

ck1j

ck2j
= βj +

λ−1(Xk
∗j)
>y − (Xk

∗j)
>X∗k − (Xk

∗j)
>Xkβ

(Xk
∗j)
>Xk
∗j

(5.15a)

vkj =
σ2
ε

ck2j
=

σ2
ε

λ2(Xk
∗j)
>Xk
∗j
. (5.15b)

Two remarks regarding (5.15). First, we require ck2j > 0; this condition is equivalent to

X∗j 6= X∗k. Second, in going from (5.12) to (5.15) we have used

λ−1(Xk
∗j)
>ykλ = λ−1(Xk

∗j)
>y − (Xk

∗j)
>X∗k. (5.16)

Note that (Xk
∗j)
>Xk and (Xk

∗j)
>y can be calulated without reference to β or λ.

Drawing βj. Here I describe the Metropolis–Hastings step. I use the truncated normal

distribution in (5.13) to draw the proposal β′j . In addition, set β′k = bkj −β′j and β′` = β` for

` 6∈ {j, k}. The density for this proposal can be expressed as

qkj (β′|β) = N[0,bkj ](β
′
j |mk

j , v
k
j ). (5.17)

Because the proposal density is proportional to the conditional likelihood, the acceptance
ratio depends only on the prior ratio:

ρkj (β, β
′) :=

p(y|λ, β′, σ2
ε) p(β

′|α, ξ)/qkj (β′|β)

p(y|λ, β, σ2
ε) p(β|α, ξ)/qkj (β|β′)

=
p(β′|α, ξ)
p(β|α, ξ)

=

(
β′j
βj

)α ξj−1(
β′k
βk

)α ξk−1

.

(5.18)

Let β◦ denote the state of β just prior to the update for βj during the current “sweep”
of the sampler (sweep r). Note that β◦ may contain some elements that have already
been updated during the current sweep and other elements that have not. In particular,

β◦j = β
(r−1)
j . Then the updated value for βj is given by

β
(r)
j =

{
β′j ρkj (β

◦, β′) ≥ u
β

(r−1)
j otherwise

, (5.19)

where u ∼ Uniform(0, 1).
Note that if the prior for β were flat, then α ξj = α ξk = 1. In this case ρkj (β, β

′) ≡ 1
and the proposal would always be accepted. This is a case where the Metropolis–Hastings
sampler reduces to the Gibbs sampler.

Alternative approach to drawing β. This section describes a Metropolis–Hastings sam-
pler for β that involves reparametrizing β. This sampler is much easier to implement and
may be nearly as efficient as the previously described sampler for β.

Let v = (v1, . . . , vK) ∈ RK . Further, let the prior distribution for v be given by p(v) =∏K
i=1 p(vj), where

p(vj) = ExpGamma(vj |aj , 1) =
eaj vj−e

vj

Γ (aj)
. (5.20)
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By definition, evj ∼ Gamma(aj , 1).
Express β in terms of v:

β =
ev∑K
j=1 e

vj
. (5.21)

Note β ∼ Dirichlet(a), where a = (a1, . . . , aK). The parameter for the Dirichlet distribution

can be re-expressed as a = α ξ where α =
∑K

j=1 aj and ξ = a/α. Also note the scaling
relation between v and β:

dβk
dvj

=

{
βj (1− βj) j = k

−βj βk j 6= k
. (5.22)

The Metropolis–Hastings sampling strategy for vj involves the following proposal:

q(v′j |vj) = N
(
v′j |vj , ς(vj)2

)
, (5.23)

where ς(vj) is a step-size function. The step-size function must be determined empirically.
As an example,

ς(vj) = a
(1

2
− tan−1

(vj −m
s

)
/π
)
, (5.24)

for suitable (a,m, s).9 Because this scale factor depends on vj , a “Hastings” correction is

required to account for asymmetry between q(v′j |v
(r−1)
j ) and q(v

(r−1)
j |v′j).

Let10

v0 = (v1, . . . , v
(r−1)
j , . . . , vK) (5.25)

v1 = (v1, . . . , v
′
j , . . . , vK) (5.26)

and let β0 and β1 be computed from v0 and v1. Then

v
(r)
j =

{
v′j M≥ u
v

(r−1)
j otherwise

, (5.27)

where u ∼ Uniform(0, 1) and

M =
p(y|λ, β1, σ2

ε) p(v
′
j)/q(v

′
j |v

(r−1)
j )

p(y|λ, β0, σ2
ε) p(v

(r−1)
j )/q(v

(r−1)
j |v′j)

. (5.28)

6. Second posterior sampler

This section describes an importance sampler. This sampler is extremely simple to im-
plement but it can be so inefficient as to be useless. Nevertheless, there are cases where it
can be useful. For example, a variant of this sampler is used in Fisher (2015).

9Preliminary testing suggests that a = −(K/α), m = − 1
2
(K/α), and s = 1

2
(K/α) tan

(
π/10
K/α

)
works

reasonably well.
10Some of the other components of v may have already been updated to (r) while others may not have

been.
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Begin by integrating out σ2
ε analytically, producing the likelihood for (λ, β):

p(y|λ, β) =

∫ ∞
0

N(y|λXβ, σ2
εIN )

σ2
ε

dσ2
ε ∝ S(λ, β)−N/2, (6.1)

where S(λ, β) is given in (2.4). Assume λ has a proper prior or is fixed.

Draw {β(r)}Rr=1 and {λ(r)}Rr=1 from their priors and evaluate the likelihood for each draw
[see (6.1)]:

q(r) := S(λ(r), β(r))−N/2. (6.2)

It is convenient to define

L̂ :=
R∑
r=1

q(r) and β̃ :=
R∑
r=1

q(r) β(r). (6.3)

Estimates of the marginal likelihood of the model and the posterior expectation of β are
given by ̂̀ := L̂/R and β := β̃/L̂. (6.4)

It is easy to parallelize this sampler using a number of batches with Rb draws in batch b.

For each batch compute L̂b and β̃b according to (6.3). Then

R =

B∑
b=1

Rb, L̂ =

B∑
b=1

L̂b, and β̃ =

B∑
b=1

β̃b, (6.5)

where B is the number of batches.

Appendix A. A class of basis densities and distributions

Basis densities. One class of basis densities is the Bernstein-Skew class,11 a special case
of which is composed of Beta-Normal distributions. Let Φ( · ) denote the cumulative dis-
tribution function (CDF) for the standard normal distribution. The density for the Beta
distribution is given by

Beta(z|a, b) = za−1 (1− z)b−1/B(a, b), (A.1)

where the beta function is B(a, b) =
∫ 1

0 z
a−1 (1 − z)b−1 dz. Then the Beta-Normal basis

densities are given by

fj(x) = Beta
(

Φ
(x− µ

η

) ∣∣∣ j,K − j + 1
)
N(x|µ, η2). (A.2)

These basis densities are related to Bernstein polynomials from which they inherit the
following adding-up property:

1

K

K∑
j=1

fj(x) = N(x|µ, η2). (A.3)

With this in mind, these basis densities may be interpreted as providing nonparametric
variation around a base distribution (which in this case is the normal distribution).

11See Quintana et al. (2009).
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Basis distributions. For the second example, it is convenient to use basis distributions.
For basis distributions, define

Fj(x) := I
Φ
(
x−µ
η

)(j,K − j + 1), (A.4)

where Iz(a, b) is the regularized incomplete beta function (i.e., the CDF of the Beta distri-
bution). Note that F ′j(x) = fj(x) as given in (A.2).
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